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Abstract

In this work we write and solve a first principles model for the motion of a bowed
string. We find limit cycle oscillations driven by stick-slip friction. The shape of
these oscillations is in accordance with the Helmholtz-Rayleigh motion. We
observe that when bow force, bow speed and other parameters are varied, the
stable limit cycle occurs in a narrow region of parameter space. This explains
why it is difficult for amateurs to produce musically acceptable sounds from the
instrument.

Lead paragraph

The problem of motion of a bowed string (violin, viola, cello and similar
instruments) has intrigued scientists from more than a century. Most researches
are derivatives of Rayleigh’s original study, where he obtained solutions of the
wave equation by making a starting assumption regarding the form of the motion.
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We propose a model which quantitatively incorporates the stick-slip friction at
the outset. The motion of the string is governed by the wave equation, while stick-
slip friction at the bow point introduces a nonlinearity. By piecewise solution of
the wave equation in the stick and slip phases, we obtain the solution of the
nonlinear system. Our framework allows us to freely vary parameters such as bow
point and bow force and determine the motion in each case.



Introduction

The problem of analysing the motion of a bowed string has been around for 140
years. The earliest attempt to understand the motion was by Helmholtz, whose
observations were quantified and systematized by the Lord Rayleigh [1]. He has
solved the homogeneous wave equation after making the assumption (on the basis
of Helmholtz’s observations) that the velocity of each point of the string is
constant upwards for part of the time and constant downwards for the remainder
of the time. This assumption incorporates the stick-slip friction — there is only
vague and qualitative justification as to why that friction should give rise to such
a motion. A more elaborate follow-up calculation, using D’ Alambert’s formula
instead of eigenfunction expansion, was done by Raman [2] but again the
Helmholtz type motion is taken as a starting point. The model was yet further
amplified and compared with experiments by Schelleng [3,4] while a summary
of literature may be found in Woodhouse [5-7]. In one of these papers,
Woodhouse has also presented an insightful discussion of the transients leading
to the limit cycle motion. A different approach has been adopted by Keller [8].
He has started from a first-principles model with a realistic treatment of the
friction characteristics. The analytical development, using D’ Alambert’s formula,
is extremely complex and the end result is that a solution has been obtained only
for the case where the string is bowed at its midpoint.

Here, we write a first-principles model like Keller but for solution use
eigenfunction expansions like Rayleigh. Further, we bring to bear the powerful
method of matched boundary conditions to obtain the motions of the string. Our
approach yields the limit cycle Helmholtz-Rayleigh motion as an output rather
than an input. It also yields the regions of parameter space where the limit cycle
occurs. Such a study has not been performed in the prior works — in Reference
[1] and its derivatives the friction or the bow motion do not appear explicitly in
the equations. In Reference [8], there is an attempt on stability analysis for the
string bowed at its midpoint. The conclusion is that there is a loss of stability if
and only if there exists a sufficiently high bowing velocity where the friction
between string and bow increases with increase in velocity — otherwise the
periodic motion is stable for all bowing force and speed. This is not fully in
accordance with the practical observation that the violin is difficult to play, and
any incorrect technique results in undesirable sounds being emitted from the
instrument.



From a dynamical systems perspective, the present study is one of the first papers
that we are aware of where a limit cycle in a PDE system has been analytically
characterized. For example, in References [10-12], limit cycles have been shown
in systems which are technically governed by PDEs, but actually have been
modelled as ordinary differential equations (ODES) by the authors. In Reference
[13], a PDE effect is observed to destabilize a limit cycle present in an ODE
system. In Reference [14], a PDE system does show a limit cycle but the same
has not been characterized analytically due to extreme complexity of the system.

The outline of this article is as follows. In Section 1 we derive the equation of
motion of the string. In Section 2 we solve the equation by obtaining the Fourier
coefficients on a computer. In Section 3 we present some features of the solution.
We conclude with a discussion.

1. Formulation of equation of motion

Stick-slip friction refers to the commonly observed phenomenon that the
coefficient of kinetic friction between two bodies in contact with each other is
less that that of static friction. This can lead to interesting kinds of oscillatory
phenomena. A simple example may be found in Stoker [15]. This apparatus
consists of a block of mass m attached to a spring of constant k and mounted on
a conveyor belt moving with speed vo. Stick-slip friction acts between the mass
and the belt. The coefficient of static friction is us while that of kinetic friction is
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Figure 1 : Spring-mass-belt system which shows stick-slip friction driven limit
cycles.

The analysis of the motion can be simplified if one makes the assumption that
w=0. In this case, the qualitative nature of the motion is apparent. One starts from
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a time when the mass is moving with the belt with the spring force being balanced
by the static friction force. Evidently, this motion state will continue until the
extension of the spring becomes equal to usmg/k. Beyond this point, the mass will
start to slip. Since =0 by the assumptions, the dynamics will now be that of the
spring and mass alone. This motion will continue until the mass acquires at some
point in its trajectory the velocity vy of the conveyor belt. At this time, it will
become at rest relative to the belt and static friction will come into effect, causing
the cycle to start over again.

String

Xp
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=®

Bow motion

Figure 2 : Schematic representation of the violin string.

We extend this logic to the violin string. We consider the string as shown in the
Fig. 2. It is tuned to a constant tension T and clamped at the two ends x=0 and
x=L. The displacement y(x,t) of the string satisfies the damped 1+1 wave equation
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with the damping constant y being very small. The bow is drawn across the string
at the point x=xg with constant velocity vo. It applies a concentrated force (delta
function line load) F at xg, perpendicular to the plane of the page. The friction
between the bow and the string is stick-slip with the static value being «s and the
Kinetic value again being assumed to be zero.

To obtain the motion of the string, we will start tracking the state of the system at
the point where the string just transitions from a stick phase to a slip phase of
motion. From this point onwards, its displacement satisfies the homogeneous
wave equation. It enters the stick phase when the velocity of the bow point
becomes equal to that of the bow. During this phase, the point x=xg moves
upwards with constant velocity vy, and the two parts to its left and right can be
assumed to satisfy the wave equation separately. The stick phase ceases when the



normal component of tension at x=xg exceeds the friction force, and the next cycle
of motion begins at this time.

Thus, by analogy with the spring-mass-belt system, we have constructed the
equation of motion of the bowed string. In the next section we will see how to
solve this equation.

2. Solution of the equation of motion

As a preparation for our primary objective, we first solve the spring-mass-belt
system. Letting x be the displacement of the mass from the equilibrium point of
the spring, the stick->slip transition occurs and the slip phase starts when the
inward force of the spring balances the restoring force of friction i.e. at
x=xo=umglk=uglw?® (Where u is the coefficient of static friction, since we are
assuming the kinetic coefficient to be zero, and w is of course the natural
frequency of the system). At this time, it is moving with the belt so its velocity is
Vo. Letting t=0 be the start of slip, the solution during slip is evidently
x =xycoswt + (v, / w)sinwr which we can rewrite as

NV
x:[xg+%) cos(wt—¢) (2)

where gp=arctan(Vo/wxo).

The slip—>stick transition occurs when the velocity of the mass becomes equal to
Vo i.e. the block becomes are rest relative to the belt. So we first calculate the
velocity by differentiating (2). Letting t; be the time when this equals vo, we get
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Plugging this into (2) and simplifying,
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The positive root is an unphysical solution and the negative root is the actual
solution for x(t;). At this point, the block sticks to the belt.



We have now described the motion of the block completely. When slip starts, it
evolves as per (2) from the point X, to the point x; which is given by (3). It then
sticks to the belt and gets carried by it out to the point xo at uniform velocity vy.
Then, it starts slipping again and the cycle begins afresh. The trajectory x(t) of
the periodic state thus looks like a portion of a sinusoidal curve joined to a straight
line. Further quantitative analysis of the condition (3) and the resulting amplitude
and period of motion under various limiting cases is no longer of interest but we
note that the analysis requires a matching of the slip and stick solutions.

Now we come to the violin. We will use separation of variables to solve the PDE.
The solution of the damped wave equation with double zero boundary conditions
at x=0 and x=I (the more usual L is the length of the violin string here, while this
analysis is general) is

nwx e—yt/Z(

y(x,¢)=Xsin A, coswy,t+ B, sinwy,t) (4)

where the ™" damped frequency is

An’r*c? 2
27 (5)
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Because the damping is light, we will let wq, be equal to nzc/l, ignoring the
correction. Then, pulling the decaying exponential outside the summation, we
have
y(x,t)ze‘yt/ZZsin?(A co

n

nrct . nmuct
S 7 + B, sin 7

(6)

Going further with the light damping approximation, we shall say that the velocity
profile is
nmwx nmc . nmct nmrc nmrct

y(x,t)ze‘yt/ZZsinT(—TAn s1nT+TBn COSTJ : (7)

where we neglect terms order y/(nzc/l), which is typically 1 percent for the lowest
frequency and is still smaller for the higher harmonics. We note that the damping
IS not an essential phenomenon in the dynamics. As we saw for the mass-spring-
belt example, the damping was not required to drive the mass into the limit cycle
— the stick-slip friction automatically kills off the homogeneous motions. We are
not taking y=0 here so that spontaneous oscillations of the violin string, which
occur when the bow is not coupling to it, die off in time. Then, we can easily tell



these motions apart from the limit cycle and also prove the role of the friction in
providing the energy for driving the oscillations.

Given this, we now have the Fourier formulae — if at t=0 the initial position be
f (x) and the initial velocity be g(x) then

!
A =21 Feo)sin™ dx (8a)
[ o [
2 ! . NTX
B, =—/|g(x)sin—dx . (8b)
nme o /

This completes the presentation of the basic tools required for our analysis.

Now we come to the violin string itself. Suppose that a phase of slip starts at some
time t=to. From this time onwards, the string as a whole satisfies the damped wave
equation. We can write the displacement as

$O = 5 sin 77X o (t-1-0)/2 {Cn cos nme(t—t,) +D,sin nme(t - fo)] | ©)
n L L
where the superscript (1) refers to the slip phase and the C,’s are D,’s are all
unknown. The long-term objective of our analysis will be to determine a relation
between the C,’s and D,’s at the start of one phase of slip, and those at the start
of the next.

Just as for the block, slip continues until a time t; when the velocity of the string
at the bow point xg becomes identically equal to vo. Thus, the condition for
transition from slip to stick is

PO (1) =7 (10)

The dynamics in the stick phase is more interesting. Here, the bow drags the point
X=xg at constant speed vo. If y(xg,t1)=y1 (a quantity which comes out when
checking for the slip—>stick transition), then the subsequent motion of this point
is y@(xg,t)=y1+Vo(t-t1), where the superscript (2) denotes the stick phase.

To find the motion of the rest of the string, we split it up into two parts — one
running from O to xg and one from xg to L. We let L; and L, (=L—L;) denote the
lengths of these two segments (of course L; and xg are numerically equal, but their
connotations are different — L, is the length of the sub-string while xg is the
coordinate of the bow). Because one boundary point of each sub-string is moving,
they will both satisfy an inhomogeneous wave equation rather than the



homogeneous one, and the general solution will be a particular or steady state
solution on top of the homogeneous motions.

The steady state solution for each sub-string is a rotation about its respective
clamp at constant angular velocity. For the left sub-string, this rotation is

@ _ (3’1 +V0(f—f1))x

ssL — ) (11)
L,
(subscript L denotes left) and its derivative is
. (2) _ VoX
yssL - 12
I, (12)

For the right sub-string, the steady state displacement is the straight line
connecting the point (xg,y1+Vo(t—t1)) to the point (L,0). We have

ViR =(y1+vo<r—r1>)(1—x;2"3] , (13)

and its derivative

. X—X

iR =0 (1 - B] , (14)
LZ

and the steady state solutions of the two sub-strings have been determined.

If we subtract off the particular solutions, then the remaining motions exhibited
by the sub-strings are just solutions of the damped wave equation with double
zero boundary conditions. Hence they satisfy the relations (4-7) with the length
being L; and L, as appropriate, and the initial time being t; instead of zero. So we
can write

2 2 —p(t—t_1)/2
¥ (x,0) = YR+

-t t—t - 15
ZSin@(Encosm+Fnsin—mw( 1)j (15)
L
For the right sub-string,
y? (x,6) =y B + e -2
Zsin—mt(x _ xB)[Gn cos—nnc(t _ tl) +H, sin ””C(f - tl)j ' (16)
n o) ” )



Finally we have to evaluate the coefficients E, to H,. These come from the
continuity of y and oy/ct at the transition from slip to stick. For the left sub-string,

the initial position and velocity are »{"(x,#) and 7 (x,z ), while for the right

sub-string they are y%’(x,#) and 7%’ (x,# ), where by the L and R subscripts we
now understand the portions of the original string in the two intervals [0, xg] and
[XB, L]

Since there is a steady state solution, the eigenfunction expansion is performed
upon the initial condition minus the steady state solutions evaluated at t=t;. This
then gives

L 1

[\

(00— 32, tl))sm?dx , (17a)

ol

I
0
L(le( (D(x H) - yﬁfg(x,tl))sin’Z—xdx , (17b)
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for the left sub-string and

2 L2 nwx

G,=— Q1) — ¥ (x, 1) )sin——dx 18a
I, (j) ( 1 R 1) I, (18a)
2 L . nmx

H=- 1 ( D) -3 Rxn))sin " dx (18b)
nmc L,

for the right.

We now ask for the time when the stick solution goes back to slip. The block
performed this transition when the spring pulled it so hard that the friction could
not keep up with it. Here, the force which will oppose the friction is the tension.
Dragging the bow point will create a kink in the string — the greater the
displacement of the bow point, the more pronounced the kink. A kink means a
discontinuity in the derivative y’ at x=xg. The normal component of tension is of
course Tsing which is Ty’ — a jump in the derivative will give rise to a
macroscopic contribution at the bow point. The bow point will stick so long as
this force remains less than the friction, which is uF where F is the bow force.
Thus, the condition for stick going to slip is

T(yEZ)'(xB’tZ) yl(’éZ)'(xBJZ)):ﬂF ' (19)
This of course defines the time of transition as t».
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Now, the desirable quantities are the coefficients C, and D, at the time t, which
Is the start of the next phase of slip. As usual, the transition will be constrained
by continuity of position and velocity at t=t,. We already have the stick solution
(15-18) at t,; now we have to choose the coefficients C,, and D, such that plugging
them into (9) with t, replaced by t, produces a new slip solution which obeys the
required ICs at t=t,. Evidently,

L . NTX
C =— L, )sin——dx 2
2 L . nIXx
D,=—/ y(x,t,)sin—dx , 20b
mrcgy( 2) L (200)

and we have obtained the required relation between the C,’s and Dy’s at the start
of one cycle and that of the next.

3. Results

The algorithm we presented above is analytically impossible to solve but
computationally simple. Hence we write a program to implement it. We partition
space into 300 points including boundaries, and initialize the first 60 spatial
eigenfunctions. The numbers 60 and 300 were chosen because it was found that
they generate accurate time traces in reasonable time-frames. There is no
perceptible change in the time trace when the size is increased, so long as the
number of harmonics and the number of spatial points considered are both
increased in proportion. More on this will be discussed later. We then initialize
the arrays for C, to H,, all of size 60 (i.e. the array C equals [Cy; Cy; .....; Ceo]
etc). We also initialize the arrays y and yq (which is oy/ot) both of size 300 (same
size as the x-array) and create a variable called mode whose value 1 denotes slip
and 2 denotes stick.
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Check mode

‘ Calculate y, y using (9) ’ ‘ Calculate y, yusing(1 5,16)‘

F } 2 i
~eoi— ‘ Test condition (10) ’ ‘ Test condition (19) ‘ i
i }

Set mode=2 Set mode=1
Define and overwrite E to H Define and overwrite C, D

using (17,18) using (20)
Define and overwrite t, Define and overwrite t;

Figure 3 : Flow chart for the computation of the solution.

To run the program we loop over the variable t which starts from zero and
increases with each iteration. Since the lowest natural frequency of the string
turns out to be approximately 300 Hz, a time incrementation of 107 s at each step
has been adopted. The following initial conditions are chosen : y(x,0) consists of
two straight lines between the clamps and the bowing point, with the
displacement at xs having the value 1/16500, and y(x,0)=0. The choice of this

IC is motivated by the fact that for xg=1/3, this amounts to an exact satisfaction
of the transition from stick to slip, while for other xg it is sufficiently close to such
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a transition that the system goes into the limit cycle oscillation. This condition
determines the initial C,’s while D, to H, are trivial. The initial mode is 1 (slip)
while t=t;=0. At every t we calculate the elements of the array y and y4 (which are
of the same size as x), use these to check for conditions and continue the solution.

The central block of the program implements the following algorithm, which is
presented as a flow chart in Fig. 3. We now present the output of the program.
The parameters are all as specified in the question. The first plot considers xg=L/3
I.e. the bow point is taken as lattice site #100. The bow speed is v,=0.06. The
output is the curve of y(x,t) with x corresponding to lattice site #81. Time is
measured in seconds and displacement in mm (conventions which will be used in
all plots).
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Figure 4 : Time trace of oscillations for excessively slow bow movement, when
the bow does not couple.

We can see that the oscillations are damped. These are generated by the IC and
not by the bow, showing that the bow has not coupled to the string. (The absence
of y in the equations would have resulted in an undamped oscillation here, making
it difficult to recognize the bow-driven limit cycle when it occurs.) Raising the
bow speed to 0.08 produces the limit cycle. The cycle persists in the range of bow
speed from about 0.07 to 0.09 — it again disappears when v,=0.1. The amplitude
of the limit cycle increases initially upto a maximum at about v,=0.085; it then
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drops and the cycle eventually vanishes. If the bow point is relocated to #50, then
also we get a similar behaviour, with the limit cycle motion appearing at about
v=0.06, increasing in amplitude and then disappearing at 0.09. Varying the IC
for a little bit (about 5 percent) around the prescribed one causes the limit cycle
to remain as it is. More significant variation however causes it to disappear.

We now select the operating point xg=#33, v,=0.08 and the special IC mentioned
above so that we can characterize the limit cycle motion in detail. This time we
simultaneously plot y(#81,t), y(#150,t), y(#225,t) and y(#270,t) as functions of
time. The successive traces are in blue, green, red and grey. Clearly, they all
oscillate together, with undiminished amplitude and identical fundamental
frequency.
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Figure 5 : Time trace of limit cycle oscillations.

Zooming in on the plot shows that the shapes of the oscillations at different points
are quite different. At sites #27 and #50, the shape is close to the triangle wave
while further away from the bow and closer to the end, it becomes like a cross
between a square wave and a sawtooth wave.
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Figure 6 : Zoomed in view of the limit cycles of Fig. 5.

We now plot the velocity of the bow point as a function of time, showing only
the zoomed in plot. Clearly, there are periods of stick (velocity equals 0.08 which
Is the bow speed) alternating with periods of slip (velocity going up and down
freely, but not crossing the bow speed).
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Figure 7 : Plot of velocity of the bow point as a function of time.
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Finally we show the function y(x) at several time points over one period. The
successive time traces are in blue, green, red, grey, cyan, magenta, almost-yellow
and black. At this step, we perform an analysis of convergence as the number of
eigenfunctions is increased. In Fig. 8 we show superpositions of the curves with
20 and 60 spatial eigenfunctions.

Displacement

-0.05 ‘ ] '
0 0.05 0.1 0.15 0.2 0.25 0.3
Space

Figure 8 : Plots of the displacement y vs. x at eight intermediate points during one
period of oscillation. One plot shows the situation with 20 eigenfunctions while
the superimposed plot shows 60 eigenfunctions. The two are very different. The
sharper lines correspond to the higher number of eigenfunctions.

Evidently the two traces are widely disparate. Increasing the number of
eigenfunctions results in convergence — in Fig. 9 we superpose plots containing
200 and 600 eigenfunctions. This time the two traces cannot be distinguished. We

also note that the plots for 60 eigenfunctions are very similar to those with 200
and 600.
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Figure 9 : Superposed plots containing 200 and 600 eigenfunctions. The two are
indistinguishable.

It is noteworthy that the plots are very similar to the slow motion video of violin
motion, found in Reference [16]. These plots are ample demonstration of the
unigue nature of PDE limit cycle oscillations in the violin string.

4. Discussion

We will now compare the present conclusions with those obtained by past
authors. In Fig. 9 we can see that the profiles of the string do have a reasonably
sharp corner which circulates around in a clockwise direction — this is the
Helmholtz motion. This corner has been labelled by the grey arrows and a number
from 1 to 8. The path of this corner is not exactly a parabola but is somewhat
skewed, corresponding to the asymmetric bow point. The velocity of the bow
point, Fig. 7 is indeed piecewise constant (or very close to it) — some of the
oscillations are the result of Gibbs phenomenon which is ignorable. This
prediction is found in all the classical works. We again note however that this
motion is a solution of our equations and not a starting assumption.

For those states which don’t go the limit cycle, some of them end up at the
damped oscillation we saw earlier, where the bow doesn’t couple. Some more
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however end up at a state which the computer shows as nearly a steady state. This
state is visible for any run where the bow force is too high. The time trace of any
point is almost a constant and the corresponding displacement (blue) and velocity
profiles (green) as functions of x are shown in Fig. 10. It appears that the computer
finds in this case a virtually instantaneous transition from slip to stick and vice
versa. According to the computer, the moment the string is released from this IC,
the velocity of xg becomes vy, while the moment the bow point is dragged up a
little bit, the tension difference becomes equal to uF. It is not apparent at this time
whether this state is a true fixed point of the system or a computational error. The
state persists upon increase of the number of eigenfunctions to very high levels.
However, since it is true that excess bow force does not generate the desirable
sounds from the instrument, one can probably conjecture without risk of error that
even if the fixed point is spurious, the system does converge to a state which is
different from the limit cycle and is musically useless.

0.2

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3
Space

Figure 10 : Apparent pseudo-fixed point found by the computer.

The small range of parameter space where the limit cycle is stable shows why it
Is so difficult to play the violin properly — the margin of error in bow force, bow
speed etc is quite low. The IC of the question is generated so as to produce a
normal component of tension at xg equal to uF, so that it very nearly does recreate
a state where stick transitions to slip. When the string starts to be played, it is
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expected that the bow will take it to such a configuration before it slips and the
dynamics start off.

In Fig. 11 we present a plot of the parameter values which give rise to the limit
cycle motion. Keeping everything else constant, the bow speed v, and the bow
force F have been varied. The outcome at 40 different points has been plotted. A
point is labelled in green if it leads to limit cycle oscillations, blue if it leads to
damped oscillations and red if it leads to the pseudo-fixed point motion. We note
that raising the force to 0.6 N Kkills the limit cycle motion entirely. Thus we can
see that the green region is a small island surrounded by undesirable motions.
This is in agreement with the fact that the violin is a difficult instrument to play.
This fact however has not been brought out by any of the prior studies due to the
absence of an explicit quantification of the friction term.
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Figure 11 : Regions of parameter space showing limit cycle oscillations (green

squares), damped oscillations (blue squares) and pseudo-fixed point motion (red
squares).

Finally we will discuss some of the approximations and assumptions inherent in
the present model. One is the assumption of «=0. Replacing the zero with finite
force is tedious but not conceptually complicated — in the slipping phase we have
to solve not the homogeneous damped wave equation but an inhomogeneous
equation with a finite force acting at xg. Another is the boundary condition at the
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ends. Instead of rigid clamping, some flexibility can be introduced by a relation
like y’(x,t)+yy(x,t)=0 at x=0 and x=L. The effect of the finite mass of the bridge
(which has been neglected here) can also be factored in via insertion of a suitable
term. All these however will make no qualitative difference and only minor
guantitative difference to the solution which we have obtained. Hence such
exercises are being reserved for future study.
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