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Abstract 

In this work we write and solve a first principles model for the motion of a bowed 

string. We find limit cycle oscillations driven by stick-slip friction. The shape of 

these oscillations is in accordance with the Helmholtz-Rayleigh motion. We 

observe that when bow force, bow speed and other parameters are varied, the 

stable limit cycle occurs in a narrow region of parameter space. This explains 

why it is difficult for amateurs to produce musically acceptable sounds from the 

instrument. 

 

Lead paragraph 

The problem of motion of a bowed string (violin, viola, cello and similar 

instruments) has intrigued scientists from more than a century. Most researches 

are derivatives of Rayleigh’s original study, where he obtained solutions of the 

wave equation by making a starting assumption regarding the form of the motion. 
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We propose a model which quantitatively incorporates the stick-slip friction at 

the outset. The motion of the string is governed by the wave equation, while stick-

slip friction at the bow point introduces a nonlinearity. By piecewise solution of 

the wave equation in the stick and slip phases, we obtain the solution of the 

nonlinear system. Our framework allows us to freely vary parameters such as bow 

point and bow force and determine the motion in each case. 
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Introduction 

The problem of analysing the motion of a bowed string has been around for 140 

years. The earliest attempt to understand the motion was by Helmholtz, whose 

observations were quantified and systematized by the Lord Rayleigh [1]. He has 

solved the homogeneous wave equation after making the assumption (on the basis 

of Helmholtz’s observations) that the velocity of each point of the string is 

constant upwards for part of the time and constant downwards for the remainder 

of the time. This assumption incorporates the stick-slip friction – there is only 

vague and qualitative justification as to why that friction should give rise to such 

a motion. A more elaborate follow-up calculation, using D’Alambert’s formula 

instead of eigenfunction expansion, was done by Raman [2] but again the 

Helmholtz type motion is taken as a starting point. The model was yet further 

amplified and compared with experiments by Schelleng [3,4] while a summary 

of literature may be found in Woodhouse [5-7]. In one of these papers, 

Woodhouse has also presented an insightful discussion of the transients leading 

to the limit cycle motion. A different approach has been adopted by Keller [8]. 

He has started from a first-principles model with a realistic treatment of the 

friction characteristics. The analytical development, using D’Alambert’s formula, 

is extremely complex and the end result is that a solution has been obtained only 

for the case where the string is bowed at its midpoint. 

Here, we write a first-principles model like Keller but for solution use 

eigenfunction expansions like Rayleigh. Further, we bring to bear the powerful 

method of matched boundary conditions to obtain the motions of the string. Our 

approach yields the limit cycle Helmholtz-Rayleigh motion as an output rather 

than an input. It also yields the regions of parameter space where the limit cycle 

occurs. Such a study has not been performed in the prior works – in Reference 

[1] and its derivatives the friction or the bow motion do not appear explicitly in 

the equations. In Reference [8], there is an attempt on stability analysis for the 

string bowed at its midpoint. The conclusion is that there is a loss of stability if 

and only if there exists a sufficiently high bowing velocity where the friction 

between string and bow increases with increase in velocity – otherwise the 

periodic motion is stable for all bowing force and speed. This is not fully in 

accordance with the practical observation that the violin is difficult to play, and 

any incorrect technique results in undesirable sounds being emitted from the 

instrument.  
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From a dynamical systems perspective, the present study is one of the first papers 

that we are aware of where a limit cycle in a PDE system has been analytically 

characterized. For example, in References [10-12], limit cycles have been shown 

in systems which are technically governed by PDEs, but actually have been 

modelled as ordinary differential equations (ODEs) by the authors. In Reference 

[13], a PDE effect is observed to destabilize a limit cycle present in an ODE 

system. In Reference [14], a PDE system does show a limit cycle but the same 

has not been characterized analytically due to extreme complexity of the system. 

The outline of this article is as follows. In Section 1 we derive the equation of 

motion of the string. In Section 2 we solve the equation by obtaining the Fourier 

coefficients on a computer. In Section 3 we present some features of the solution. 

We conclude with a discussion. 

 

1.  Formulation of equation of motion 

Stick-slip friction refers to the commonly observed phenomenon that the 

coefficient of kinetic friction between two bodies in contact with each other is 

less that that of static friction. This can lead to interesting kinds of oscillatory 

phenomena. A simple example may be found in Stoker [15]. This apparatus 

consists of a block of mass m attached to a spring of constant k and mounted on 

a conveyor belt moving with speed v0. Stick-slip friction acts between the mass 

and the belt. The coefficient of static friction is μs while that of kinetic friction is 

μk with μk<μs.  

 

Figure 1 : Spring-mass-belt system which shows stick-slip friction driven limit 

cycles. 

 

The analysis of the motion can be simplified if one makes the assumption that 

μk=0. In this case, the qualitative nature of the motion is apparent. One starts from 
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a time when the mass is moving with the belt with the spring force being balanced 

by the static friction force. Evidently, this motion state will continue until the 

extension of the spring becomes equal to μsmg/k. Beyond this point, the mass will 

start to slip. Since μk=0 by the assumptions, the dynamics will now be that of the 

spring and mass alone. This motion will continue until the mass acquires at some 

point in its trajectory the velocity v0 of the conveyor belt. At this time, it will 

become at rest relative to the belt and static friction will come into effect, causing 

the cycle to start over again.  

 

 

Figure 2 : Schematic representation of the violin string. 

We extend this logic to the violin string. We consider the string as shown in the 

Fig. 2. It is tuned to a constant tension T and clamped at the two ends x=0 and 

x=L. The displacement y(x,t) of the string satisfies the damped 1+1 wave equation 

 
2 2

2 2 2

1y y y

tx c t
γ

  
= +

 
   , (1) 

with the damping constant γ being very small. The bow is drawn across the string 

at the point x=xB with constant velocity v0. It applies a concentrated force (delta 

function line load) F at xB, perpendicular to the plane of the page. The friction 

between the bow and the string is stick-slip with the static value being μs and the 

kinetic value again being assumed to be zero.  

To obtain the motion of the string, we will start tracking the state of the system at 

the point where the string just transitions from a stick phase to a slip phase of 

motion. From this point onwards, its displacement satisfies the homogeneous 

wave equation. It enters the stick phase when the velocity of the bow point 

becomes equal to that of the bow. During this phase, the point x=xB moves 

upwards with constant velocity v0, and the two parts to its left and right can be 

assumed to satisfy the wave equation separately. The stick phase ceases when the 
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normal component of tension at x=xB exceeds the friction force, and the next cycle 

of motion begins at this time. 

Thus, by analogy with the spring-mass-belt system, we have constructed the 

equation of motion of the bowed string. In the next section we will see how to 

solve this equation. 

 

2.  Solution of the equation of motion 

As a preparation for our primary objective, we first solve the spring-mass-belt 

system. Letting x be the displacement of the mass from the equilibrium point of 

the spring, the stick→slip transition occurs and the slip phase starts when the 

inward force of the spring balances the restoring force of friction i.e. at 

x=x0=μmg/k=μg/ω2 (where μ is the coefficient of static friction, since we are 

assuming the kinetic coefficient to be zero, and ω is of course the natural 

frequency of the system). At this time, it is moving with the belt so its velocity is 

v0. Letting t=0 be the start of slip, the solution during slip is evidently 

( )0 0cos / sinx x t v tω ω ω= +  which we can rewrite as  

 ( )
1/2

2
2 0
0 2

cos
v

x x tω φ
ω

 
= + − 
 

   , (2) 

where φ=arctan(v0/ωx0).  

The slip→stick transition occurs when the velocity of the mass becomes equal to 

v0 i.e. the block becomes are rest relative to the belt. So we first calculate the 

velocity by differentiating (2). Letting t1 be the time when this equals v0, we get  

 ( )
( )

0
1 1/2

2 2 2
0 0

sin
v

t

x v

ω φ

ω

− = −

+

   . 
 

Plugging this into (2) and simplifying,  

 

( )

1/2
1/2

2 2
2 0 0

1 0 2 2
2 2 2
0 0

( ) 1
v v

x t x
x vω ω

 
   =  + −   

   +
 

   . (3) 

The positive root is an unphysical solution and the negative root is the actual 

solution for x(t1). At this point, the block sticks to the belt. 
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We have now described the motion of the block completely. When slip starts, it 

evolves as per (2) from the point x0 to the point x1 which is given by (3). It then 

sticks to the belt and gets carried by it out to the point x0 at uniform velocity v0. 

Then, it starts slipping again and the cycle begins afresh. The trajectory x(t) of 

the periodic state thus looks like a portion of a sinusoidal curve joined to a straight 

line. Further quantitative analysis of the condition (3) and the resulting amplitude 

and period of motion under various limiting cases is no longer of interest but we 

note that the analysis requires a matching of the slip and stick solutions.  

Now we come to the violin. We will use separation of variables to solve the PDE. 

The solution of the damped wave equation with double zero boundary conditions 

at x=0 and x=l (the more usual L is the length of the violin string here, while this 

analysis is general) is 

 ( ) ( )/2, sin e cos sint
n dn n dn

n

n x
y x t A t B t

l

γπ
ω ω−= +    , (4) 

where the nth damped frequency is 

 

2 2 2
2

2

4

2
dn

n c

l

π
γ

ω

−

=    . 
(5) 

Because the damping is light, we will let ωdn be equal to nπc/l, ignoring the 

correction. Then, pulling the decaying exponential outside the summation, we 

have 

 ( ) /2, e sin cos sint
n n

n

n x n ct n ct
y x t A B

l l l

γ π π π−  
= +  

 
   . (6) 

Going further with the light damping approximation, we shall say that the velocity 

profile is 

( ) /2, e sin sin cost
n n

n

n x n c n ct n c n ct
y x t A B

l l l l l

γ π π π π π−  
= − +  

 
   , (7) 

where we neglect terms order γ/(nπc/l), which is typically 1 percent for the lowest 

frequency and is still smaller for the higher harmonics. We note that the damping 

is not an essential phenomenon in the dynamics. As we saw for the mass-spring-

belt example, the damping was not required to drive the mass into the limit cycle 

– the stick-slip friction automatically kills off the homogeneous motions. We are 

not taking γ=0 here so that spontaneous oscillations of the violin string, which 

occur when the bow is not coupling to it, die off in time. Then, we can easily tell 
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these motions apart from the limit cycle and also prove the role of the friction in 

providing the energy for driving the oscillations. 

Given this, we now have the Fourier formulae – if at t=0 the initial position be 

f (x) and the initial velocity be g(x) then 

 
0

2
( )sin d

l

n

n x
A f x x

l l

π
=     , (8a) 

 
0

2
( )sin d

l

n

n x
B g x x

n c l

π

π
=     . (8b) 

This completes the presentation of the basic tools required for our analysis. 

Now we come to the violin string itself. Suppose that a phase of slip starts at some 

time t=t0. From this time onwards, the string as a whole satisfies the damped wave 

equation. We can write the displacement as 

( ) ( ) ( )_0 /2(1) 0 0sin e cos sin
t t

n n
n

n c t t n c t tn x
y C D

L L L

γ π ππ − −  − −
= +  

 
  , (9) 

where the superscript (1) refers to the slip phase and the Cn’s are Dn’s are all 

unknown. The long-term objective of our analysis will be to determine a relation 

between the Cn’s and Dn’s at the start of one phase of slip, and those at the start 

of the next. 

Just as for the block, slip continues until a time t1 when the velocity of the string 

at the bow point xB becomes identically equal to v0. Thus, the condition for 

transition from slip to stick is  

 ( )(1)
1 0,By x t v=    . (10) 

The dynamics in the stick phase is more interesting. Here, the bow drags the point 

x=xB at constant speed v0. If y(1)(xB,t1)=y1 (a quantity which comes out when 

checking for the slip→stick transition), then the subsequent motion of this point 

is y(2)(xB,t)=y1+v0(t−t1), where the superscript (2) denotes the stick phase.  

To find the motion of the rest of the string, we split it up into two parts – one 

running from 0 to xB and one from xB to L. We let L1 and L2 (=L−L1) denote the 

lengths of these two segments (of course L1 and xB are numerically equal, but their 

connotations are different – L1 is the length of the sub-string while xB is the 

coordinate of the bow). Because one boundary point of each sub-string is moving, 

they will both satisfy an inhomogeneous wave equation rather than the 
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homogeneous one, and the general solution will be a particular or steady state 

solution on top of the homogeneous motions.  

The steady state solution for each sub-string is a rotation about its respective 

clamp at constant angular velocity. For the left sub-string, this rotation is  

 
( )(2) 1 0 1

1

( )
ssL

y v t t x
y

L

+ −
=    , (11) 

(subscript L denotes left) and its derivative is 

 
(2) 0

1

ssL

v x
y

L
=    . (12) 

For the right sub-string, the steady state displacement is the straight line 

connecting the point (xB,y1+v0(t−t1)) to the point (L,0). We have  

 ( )(2)
1 0 1

2

( ) 1 B
ssR

x x
y y v t t

L

 −
= + − − 

 
   , (13) 

and its derivative 

 
(2)

0

2

1 B
ssR

x x
y v

L

 −
= − 

 
   , (14) 

and the steady state solutions of the two sub-strings have been determined. 

If we subtract off the particular solutions, then the remaining motions exhibited 

by the sub-strings are just solutions of the damped wave equation with double 

zero boundary conditions. Hence they satisfy the relations (4-7) with the length 

being L1 and L2 as appropriate, and the initial time being t1 instead of zero. So we 

can write 

( ) ( )

( ) ( )

_1 /2(2) (2)

1 1

1 1 1

, e

sin cos sin

t t
L ssL

n n
n

y x t y

n c t t n c t tn x
E F

L L L

γ

π ππ

− −
= + 

− − 
+  

 

   . (15) 

For the right sub-string,  

( ) ( )

( ) ( ) ( )

_1 /2(2) (2)

1 1

2 2 2

, e

sin cos sin

t t
R ssR

B
n n

n

y x t y

n x x n c t t n c t t
G H

L L L

γ

π π π

− −
= + 

− − − 
+  

 

  . (16) 
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Finally we have to evaluate the coefficients En to Hn. These come from the 

continuity of y and ∂y/∂t at the transition from slip to stick. For the left sub-string, 

the initial position and velocity are ( )(1)
1,Ly x t  and ( )(1)

1,Ly x t , while for the right 

sub-string they are ( )(1)
1,Ry x t  and ( )(1)

1,Ry x t , where by the L and R subscripts we 

now understand the portions of the original string in the two intervals [0, xB] and 

[xB, L]. 

Since there is a steady state solution, the eigenfunction expansion is performed 

upon the initial condition minus the steady state solutions evaluated at t=t1. This 

then gives 

 ( )
_1

(1) (2)
1 1

01 1

2
( , ) ( , ) sin d

L

n L ssL

n x
E y x t y x t x

L L

π
= −    , (17a) 

 ( )
_1

(1) (2)
1 1

0 1

2
( , ) ( , ) sin d

L

n L ssL

n x
F y x t y x t x

n c L

π

π
= −    , (17b) 

for the left sub-string and 

 ( )
_2

(1) (2)
1 1

02 2

2
( , ) ( , ) sin d

L

n R ssR

n x
G y x t y x t x

L L

π
= −    , (18a) 

 ( )
_2

(1) (2)
1 1

0 2

2
( , ) ( , ) sin d

L

n R ssR

n x
H y x t y x t x

n c L

π

π
= −    , (18b) 

for the right.  

We now ask for the time when the stick solution goes back to slip. The block 

performed this transition when the spring pulled it so hard that the friction could 

not keep up with it. Here, the force which will oppose the friction is the tension. 

Dragging the bow point will create a kink in the string – the greater the 

displacement of the bow point, the more pronounced the kink. A kink means a 

discontinuity in the derivative y’ at x=xB. The normal component of tension is of 

course Tsinθ which is Ty’ – a jump in the derivative will give rise to a 

macroscopic contribution at the bow point. The bow point will stick so long as 

this force remains less than the friction, which is μF where F is the bow force. 

Thus, the condition for stick going to slip is  

 ( ) ( )( )(2) (2)
2 2' , ' ,L B R BT y x t y x t Fμ− =    . (19) 

This of course defines the time of transition as t2. 
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Now, the desirable quantities are the coefficients Cn and Dn at the time t2 which 

is the start of the next phase of slip. As usual, the transition will be constrained 

by continuity of position and velocity at t=t2. We already have the stick solution 

(15-18) at t2; now we have to choose the coefficients Cn and Dn such that plugging 

them into (9) with t0 replaced by t2 produces a new slip solution which obeys the 

required ICs at t=t2. Evidently, 

 ( )2
0

2
, sin d

L

n

n x
C y x t x

L L

π
=     , (20a) 

 ( )2
0

2
, sin d

L

n

n x
D y x t x

n c L

π

π
=     , (20b) 

and we have obtained the required relation between the Cn’s and Dn’s at the start 

of one cycle and that of the next. 

 

3.  Results 

The algorithm we presented above is analytically impossible to solve but 

computationally simple. Hence we write a program to implement it. We partition 

space into 300 points including boundaries, and initialize the first 60 spatial 

eigenfunctions. The numbers 60 and 300 were chosen because it was found that 

they generate accurate time traces in reasonable time-frames. There is no 

perceptible change in the time trace when the size is increased, so long as the 

number of harmonics and the number of spatial points considered are both 

increased in proportion. More on this will be discussed later. We then initialize 

the arrays for Cn to Hn, all of size 60 (i.e. the array C equals [C1; C2; …..; C60] 

etc). We also initialize the arrays y and yd (which is ∂y/∂t) both of size 300 (same 

size as the x-array) and create a variable called mode whose value 1 denotes slip 

and 2 denotes stick.  
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Figure 3 : Flow chart for the computation of the solution. 

 

To run the program we loop over the variable t which starts from zero and 

increases with each iteration. Since the lowest natural frequency of the string 

turns out to be approximately 300 Hz, a time incrementation of 10−5 s at each step 

has been adopted. The following initial conditions are chosen : y(x,0) consists of 

two straight lines between the clamps and the bowing point, with the 

displacement at xB having the value 1/16500, and ( ),0 0y x = . The choice of this 

IC is motivated by the fact that for xB=1/3, this amounts to an exact satisfaction 

of the transition from stick to slip, while for other xB it is sufficiently close to such 
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a transition that the system goes into the limit cycle oscillation. This condition 

determines the initial Cn’s while Dn to Hn are trivial. The initial mode is 1 (slip) 

while t=t0=0. At every t we calculate the elements of the array y and yd (which are 

of the same size as x), use these to check for conditions and continue the solution. 

The central block of the program implements the following algorithm, which is 

presented as a flow chart in Fig. 3. We now present the output of the program. 

The parameters are all as specified in the question. The first plot considers xB=L/3 

i.e. the bow point is taken as lattice site #100. The bow speed is v0=0.06. The 

output is the curve of y(x,t) with x corresponding to lattice site #81. Time is 

measured in seconds and displacement in mm (conventions which will be used in 

all plots). 

 

Figure 4 : Time trace of oscillations for excessively slow bow movement, when 

the bow does not couple. 

 

We can see that the oscillations are damped. These are generated by the IC and 

not by the bow, showing that the bow has not coupled to the string. (The absence 

of γ in the equations would have resulted in an undamped oscillation here, making 

it difficult to recognize the bow-driven limit cycle when it occurs.) Raising the 

bow speed to 0.08 produces the limit cycle. The cycle persists in the range of bow 

speed from about 0.07 to 0.09 – it again disappears when v0=0.1. The amplitude 

of the limit cycle increases initially upto a maximum at about v0=0.085; it then 
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drops and the cycle eventually vanishes. If the bow point is relocated to #50, then 

also we get a similar behaviour, with the limit cycle motion appearing at about 

v0=0.06, increasing in amplitude and then disappearing at 0.09. Varying the IC 

for a little bit (about 5 percent) around the prescribed one causes the limit cycle 

to remain as it is. More significant variation however causes it to disappear.  

We now select the operating point xB=#33, v0=0.08 and the special IC mentioned 

above so that we can characterize the limit cycle motion in detail. This time we 

simultaneously plot y(#81,t), y(#150,t), y(#225,t) and y(#270,t) as functions of 

time. The successive traces are in blue, green, red and grey. Clearly, they all 

oscillate together, with undiminished amplitude and identical fundamental 

frequency.  

 

Figure 5 : Time trace of limit cycle oscillations. 

 

Zooming in on the plot shows that the shapes of the oscillations at different points 

are quite different. At sites #27 and #50, the shape is close to the triangle wave 

while further away from the bow and closer to the end, it becomes like a cross 

between a square wave and a sawtooth wave.  
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Figure 6 : Zoomed in view of the limit cycles of Fig. 5. 

 

We now plot the velocity of the bow point as a function of time, showing only 

the zoomed in plot. Clearly, there are periods of stick (velocity equals 0.08 which 

is the bow speed) alternating with periods of slip (velocity going up and down 

freely, but not crossing the bow speed). 

  

Figure 7 : Plot of velocity of the bow point as a function of time. 
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Finally we show the function y(x) at several time points over one period. The 

successive time traces are in blue, green, red, grey, cyan, magenta, almost-yellow 

and black. At this step, we perform an analysis of convergence as the number of 

eigenfunctions is increased. In Fig. 8 we show superpositions of the curves with 

20 and 60 spatial eigenfunctions.  

 

Figure 8 : Plots of the displacement y vs. x at eight intermediate points during one 

period of oscillation. One plot shows the situation with 20 eigenfunctions while 

the superimposed plot shows 60 eigenfunctions. The two are very different. The 

sharper lines correspond to the higher number of eigenfunctions.  

 

Evidently the two traces are widely disparate. Increasing the number of 

eigenfunctions results in convergence – in Fig. 9 we superpose plots containing 

200 and 600 eigenfunctions. This time the two traces cannot be distinguished. We 

also note that the plots for 60 eigenfunctions are very similar to those with 200 

and 600. 
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Figure 9 : Superposed plots containing 200 and 600 eigenfunctions. The two are 

indistinguishable. 

 

It is noteworthy that the plots are very similar to the slow motion video of violin 

motion, found in Reference [16]. These plots are ample demonstration of the 

unique nature of PDE limit cycle oscillations in the violin string.  

 

4. Discussion 

We will now compare the present conclusions with those obtained by past 

authors. In Fig. 9 we can see that the profiles of the string do have a reasonably 

sharp corner which circulates around in a clockwise direction – this is the 

Helmholtz motion. This corner has been labelled by the grey arrows and a number 

from 1 to 8. The path of this corner is not exactly a parabola but is somewhat 

skewed, corresponding to the asymmetric bow point. The velocity of the bow 

point, Fig. 7 is indeed piecewise constant (or very close to it) – some of the 

oscillations are the result of Gibbs phenomenon which is ignorable. This 

prediction is found in all the classical works. We again note however that this 

motion is a solution of our equations and not a starting assumption. 

For those states which don’t go the limit cycle, some of them end up at the 

damped oscillation we saw earlier, where the bow doesn’t couple. Some more 
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however end up at a state which the computer shows as nearly a steady state. This 

state is visible for any run where the bow force is too high. The time trace of any 

point is almost a constant and the corresponding displacement (blue) and velocity 

profiles (green) as functions of x are shown in Fig. 10. It appears that the computer 

finds in this case a virtually instantaneous transition from slip to stick and vice 

versa. According to the computer, the moment the string is released from this IC, 

the velocity of xB becomes v0, while the moment the bow point is dragged up a 

little bit, the tension difference becomes equal to μF. It is not apparent at this time 

whether this state is a true fixed point of the system or a computational error. The 

state persists upon increase of the number of eigenfunctions to very high levels. 

However, since it is true that excess bow force does not generate the desirable 

sounds from the instrument, one can probably conjecture without risk of error that 

even if the fixed point is spurious, the system does converge to a state which is 

different from the limit cycle and is musically useless. 

 

Figure 10 : Apparent pseudo-fixed point found by the computer. 

 

The small range of parameter space where the limit cycle is stable shows why it 

is so difficult to play the violin properly – the margin of error in bow force, bow 

speed etc is quite low. The IC of the question is generated so as to produce a 

normal component of tension at xB equal to μF, so that it very nearly does recreate 

a state where stick transitions to slip. When the string starts to be played, it is 
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expected that the bow will take it to such a configuration before it slips and the 

dynamics start off. 

In Fig. 11 we present a plot of the parameter values which give rise to the limit 

cycle motion. Keeping everything else constant, the bow speed v0 and the bow 

force F have been varied. The outcome at 40 different points has been plotted. A 

point is labelled in green if it leads to limit cycle oscillations, blue if it leads to 

damped oscillations and red if it leads to the pseudo-fixed point motion. We note 

that raising the force to 0.6 N kills the limit cycle motion entirely. Thus we can 

see that the green region is a small island surrounded by undesirable motions. 

This is in agreement with the fact that the violin is a difficult instrument to play. 

This fact however has not been brought out by any of the prior studies due to the 

absence of an explicit quantification of the friction term.  

 

Figure 11 : Regions of parameter space showing limit cycle oscillations (green 

squares), damped oscillations (blue squares) and pseudo-fixed point motion (red 

squares). 

 

Finally we will discuss some of the approximations and assumptions inherent in 

the present model. One is the assumption of μk=0. Replacing the zero with finite 

force is tedious but not conceptually complicated – in the slipping phase we have 

to solve not the homogeneous damped wave equation but an inhomogeneous 

equation with a finite force acting at xB. Another is the boundary condition at the 
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ends. Instead of rigid clamping, some flexibility can be introduced by a relation 

like y’(x,t)+γy(x,t)=0 at x=0 and x=L. The effect of the finite mass of the bridge 

(which has been neglected here) can also be factored in via insertion of a suitable 

term. All these however will make no qualitative difference and only minor 

quantitative difference to the solution which we have obtained. Hence such 

exercises are being reserved for future study. 
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